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The properties of finite-amplitude thermal convection for a Boussinesq fluid 
contained in a spherical shell are investigated. All nonlinear terms are retained 
in the equations, and both axisymmetric and non-axisymmetric solutions are 
studied. The velocity is expanded in terms of poloidal and toroidal vectors. 
Spherical surface harmonics resolve the horizontal structure of the flow, but 
finite differences are used in the vertical. With a few modifications, the transform 
method developed by Orszag (1970) is used to calculate the nonlinear terms, 
while Green’s function techniques are applied to the poloidal equation and 
diffusion terms. 

Axisymmetric solutions become unstable to non-axisymmetric perturbations 
a t  values of the Rayleigh number that depend on Prandtl number and shell 
thickness. However, even when stable, axisymmetric solutions are not a preferred 
solution to the full equations; steady non-axisymmetric solutions are obta.ined 
for the same parameter values. Initial conditions determine the characteristics 
of the finite-amplitude solutions, including, in the cases of non-axisymmetry, 
whether or not a steady state is achieved. Transitions in horizontal flow structure 
can occur, accompanied by a transition in functional dependence of heat flux on 
Rayleigh number. The dominant modes in the solutions are usually the modes 
most unstable to the onset of convection, but not always. 

1. Introduction 
Many important geophysical and astrophysical problems involve thermal 

convection in spherical geometries. Therefore, an understanding of how con- 
vective flow fields behave when curvature cannot be neglected seems essential in 
trying to comprehend these systems. This study is a numerical investigation of 
the finite-amplitude behaviour of a Boussinesqlayer of fluid confined between two 
concentric spherical boundaries and heated from below. The boundaries are 
taken as free surfaces. Rotation is not considered here, because an understanding 
of the fluid dynamics in a stationary system is desirable before the considerable 
complications of rotation are imposed. In  treating some geophysical or 
astrophysical situations, certain aspects of the problem as developed here, 
such as the Boussinesq approximation, would probably have to be modified. 

t Present address: Space Science Division, NASA, Ames Research Center, Moffett 
Field, California 94035. 
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Nevertheless, the results obtained should yield valuable information on the 
kinds of flow behaviour that can occur. 

The results of linear theory concerning the onset of convection for various 
spherical cases are reported in Chandrasekhar (1961). There it is shown that the 
critical Rayleigh number R,, as defined in Q 2, is in general a decreasing function of 
the ratio of inner to outer boundary radius, and is independent of the azimuthal 
wavenumber. These results assume the principle of exchange of stability. Com- 
putations of R,, by Durney (1968), as well as those done in this study, indicate that 
this is a valid assumption for the present situation, since they agree with the B,, 
determined by the formulae in Chandrasekhar. 

Durney (1968) integrated the equations of motion for the above system using 
Herring’s approximation, which neglects fluctuating nonlinear self-interactions. 
Herring’s approximation allows the finite-amplitude solution to be given in 
terms of a single mode, when the solution is expanded in spherical suface 
harmonics. Durney demonstrated numerically that, when the ratio of inner 
boundary radius to outer boundary radius was 0.8 (the only case he considered), 
the stable finite-amplitude solution consisted of the mode most unstable to  the 
onset of convection. For low Rayleigh numbers, this mode was the same as the 
one which maximized the heat flux. 

In  this paper, the complete nonlinear expressions for advection of temperature 
and momentum are retained in the equations, and both axisymmetric and non- 
axisymmetric solutions are investigated. The intent is not to conduct an extensive 
parametric survey (because, for one thing, the required computer time would be 
excessive). Rather, it is to examine interesting aspects of the finite-amplitude 
solutions. For example, in contrast to results using the Herring approximation, 
the dominant mode in the finite-amplitude solutions is not always the mode most 
unstable to the onset of convection. In  addition, sudden transitions in both 
horizontal flow structure and dependence of heat flux on Rayleigh number can 
occur, and oscillatory behaviour is observed in certain instances as well. 

Finally, there is a fundamental difference between the problem treated here 
and plane parallel convection (or, for that matter, spherical convection using the 
Herring approximation). The finite-amplitude solution completely determines 
the horizontal spectral character of the flow. A priori choice of horizontal wave- 
number is no longer possible. This is, of course, a result of the fact we are con- 
sidering a completely enclosed volume combined with nonlinear effects. 

A formal statement of the problem is given in § 2 ,  followed by a description of 
the numerical procedure in 5 3. Sections 4 and 5 present the numerical results. 

2. Detailed model 
The basic model considered is that of a Boussinesq fluid contained in the 

region between two isothermal concentric spherical boundaries located at  radii 
rl and r2 ,  rl being the inner boundary. The shell overlies a core of the same density 
as the fluid. The gravitational acceleration g is then given by 

** 
g = 4rG/r2 1 ‘pr2dr  = $n-Gpr, 
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where p is the fluid density, r is the radius, G is the gravitational constant and the 
gravitational field is - gF. The problem is non-dimensionalized, using the distance 
between the boundaries d as the length scale, d2/v  as the time scale, where v is the 
kinematic viscosity, and ATP as the temperature scale, where AT is the applied 
temperature difference across the spherical shell, and P = V / K ,  K being the thermal 
diffusivity. The velocity is scaled with v/d .  

The dimensionless equations governing the fluid are 

v.u = 0, 

where u is the fluid velocity, T the temperature and the Rayleigh number 

aATgodS R =  
K V  

In  (2.4) a! is the coefficient of thermal expansion, and go is the value of g at the 
outer boundary. The boundaries at  rl, r2 ( = rl + 1)  will be taken as free surfaces. 
Thus, in a spherical co-ordinate system ( r ,  8, $), where 6 is the co-latitude, 

The fluid is heated from below so that the temperature in the absence of 

1 ( 1 - r1/4 
convection To is 

T - _ _  
O - P (1 - rl /r2)  

(2.5) 

To has been taken as zero at rl. The total temperature T is the sum of T,(r) and 
the deviation from the purely conductive solution @(r,O,$,t) .  At rl and r2, 
0 vanishes. 

Using the fact u is solenoidal, we shall write u in terms of poloidal and toroidal 
vectors (of. Chandrasekhar 196 I). Expanding in spherical surface harmonics 
YF(6,$) with coefficients tE(r, t )  and pz(r, t )  for the toroidal and poloidal parts, 
respectively , gives 

Writing 

the equations for tE and p? are obtained by applying the operators 9. and P . curl 
o (2.1). Defining SF = p e / r  and Tg = tF/r2, 
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r R 
( p . V  x V x [(V x u) x u]}:--@?, 

a -9 ,p 9 2  flm - - (2.9) 
L(L + 1) r2 

at L L- L L -  

a@? 1 
at P gL (32 = - (V . (UT));, (2.10) 

d2 4 d 2-L(L+1) 
, D L = - 2 + - - +  

d2 2 d L(L+1 
dr r dr r2 

where 9L = -2+---- dr r dr r2 , 

and { >z denotes the ( L , m )  component of the quantity within. The boundary 
conditions are 

(2.11) 

The form of Y'f4 is chosen to agree with Condon & Shortley's (1961) definition of 
spherical harmonics, so that 

(2.12) YE* = ( -  1)m y 7  

the star denoting the complex conjugate. In addition, 

(2.13) 

To reduce the amount of computer time involved in the calculations by a 
factor of between 2 and 4, only hemispheric models are considered (i.e. u, is an 
odd function of 0 about the equator, while all other variables are even functions). 
It can be seen from the governing equations that, if the initial conditions possess 
this symmetry about the equator, the subsequent solution will also. Poloidal and 
thermal modes are therefore restricted to modes with L+m even, while the 
toroidal modes have L + m  odd. It should be noted that, if the initial conditions 
possess thc opposite symmetry from that described above, the subsequent 
solution will not retain this symmetry, and both symmetric and antisymmetric 
modes would appear in the solution. The problem we are considering is rigorously 
equivalent to that of a hemispheric shell with the equatorial plane a thermally 
insulating boundary having zero tangential stress. 

It is easy to show that in the steady state the sum of the conductive and con- 
\-&ire heat flux, 

- 4nrS - + y2 u, 0, 
dp - 
dr 

is independent of r. The bar denotes an integral over angles. 

3. Numerical method 
The basic structure of the numerical procedure is as follows. The problem is 

treated as a time-dependent initial-value problem. An expansion in terms of 
spherical surface harmonics is used for computing the horizontal variations of the 
How fields, while in the radial direction a grid system is established instead of 
expanding in terms of radial eigenfunctions. Centred differences are used to 
approximate first- and second-order radial derivatives. As discussed later in 3 3, 
second-order derivatives are the highest that had to be approximated. 



Thermal convection in a spherical shell 6 99 

The use of surface harmonics instead of finite differences to resolve the hori- 
zontal structure of the flow field has certain numerical advantages. The first is 
that special difficulties which occur near the poles in finite-difference methods 
(Holloway et al. 1973) are eliminated. Second, instabilities due to the aliasing 
errors of a horizontal grid do not exist (Orszag 1970). The reason for using a grid 
in the radial direction is that the appropriate radial functions for an expansion 
are combinations of spherical Bessel functions and powers of r ,  and no efficient 
means of calculating nonlinear coefficients was apparent. 

Knowing the values of TF, SF, OT a t  time t ,  the task is to find their values at 
time t + At, and so on. The first step in the process is to calculate the (L,  m) 
coefficients of the nonlinear terms on the right-hand side of (2.8)-(2.10) at time t .  
The manner in which this is done is discussed later in $3,  and is the most time 
consuming part of the computation. After this has been completed, the next step 
is t o  consider (2.9). At first glance the left-hand side presents a problem. A fourth- 
order derivative appears, as well as the time derivative of spatial derivatives up 
t o  second order. Finite differencing the left-hand side would mean that a matrix 
equation would have to be solved for the values of AYT a t  t + At, and in order to 
avoid a time step restriction proportional to tar)*, where Ar is the radial grid 
spacing, implicit methods would have to be used. The approximation of fourth- 
and third-order derivatives by finite differences did not appear desirable, because 
a fine grid would be necessary before such approximations would have any 
meaning. 

The method employed here is to use a Green's function, G,, for the operator 
a&, and then rewrite (2.9) as 

where the boundary conditions on GL have been chosen so that 

0, = 0 at r1,r2.  (3.2) 

Equation (3.1) is derived as follows. Let H = aflT/at-BLXT and h equal the 
right-hand side of (2.9). Then 

The Green's function GL satisfies 

(3.4) 

where S(r - r,) is the Dirac delta function. Multiplying (3.3) by r$GL, (3.4) by rgF, 
subtracting and integrating the result over ro from r l  to r2 gives (3.1) when GL 
satisfies (3.2). GLis easily obtained, and is given by (see Jackson 1962, pp. 79-80) 
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where r ,  (r,) is thegreater (lesser) ofr  or r,,. Using this Green’s function approach 
also has the advantage that third-order derivatives occurring in the nonlinear 
terms can be integrated by parts, so that at  no point in the numerical procedure 
do radial derivatives higher than second order have to  be approximated by finite 
differences. The integral in (3.1) was approximated using the trapezoidal rule. 
The boundary values of the quantity 

are simply - (2 / r )  (dXE/dr). Because d2S’f/dr2 = 0 at  r l ,  r2, a one-sided difference 
gives dST/dr to O(Ar2) .  

The left-hand sides of (2.8), (2.10) and (3.1) could now be straightforwardly 
approximated by finite differences, using a leapfrog or some other appropriate 
scheme. However, a different method was chosen here for the following reasons. 
In  all but the most nonlinear cases, the most stringent constraint on the time step 
is usually due to the second-order derivative occurring in the diffusion terms. 
Implicit methods, such as that of Crank-Nicholson, applied to the diffusion terms 
can eliminate the diffusive stability restriction on the time step, however, it  is not 
likely that modes with wavelength the order of Ar would be appropriately repre- 
sented, i.e. viscously damped, unIess At 2 Ar2. A desirable way to handle diffusion 
would be one that allows At > Ar2, but at  the same time retains the damping 
character. The use of the Green’s function for the one-dimensional diffusion 
equation allows this to be done. 

The procedure will be illustrat,ed using the temperature equation ( 2 .  lo), which 
is rewritten as 

In most of the cases considered in this paper, the time step restriction in a finite- 
difference scheme resulting from the last two terms on the right side of (3.6) would 
be less stringent than that resulting from the second-order derivative on the 
left-ha,nd side. By using the one-dimensional diffusion equation Green’s function, 
the secoiid-order radial derivat,ive can be eliminated, and (3.6) becomes 

The Green‘s function involved in (3.7) can be obtained in closed form; however, 
a typical term would be proportional to 

exp ( ( r  - rOj2/4t). 

It is readily seen that the number of operations required to perform the spatial 
integrals on such a term would be O(N,2), where N, is the number of vertical levels. 
The alternative is to use an eigenfunction expansion for the Green’s function, 
which then gives (see Morse & Feshbach 1953) 

m 

GBy(r ,  tlr,, to) = 2 exp { - n2n2(t - f , ) /P}  sin nn(r - r l )  sin nn(ro - r l ) .  (3.8) 
n=l 
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Gey has been chosen so that it vanishes at  rl ,  r2. The Green’s function for is 
the same as GeE, except the factor P does not appear in the exponential describing 
the time dependence. The expression for GTY is 

GTy(r,tlro,to) = 1 + 2  C exp{-n2n2(t-to))cosnn(r-rr,)cosnn(ro-rl), (3.9) 
n=l  

where GTF is chosen so that aG,/ar = aGTF/ar, = 0 a t  rl, ra. The boundary 
conditions satisfied by the Green’s functions correspond to the boundary 
conditions satisfied by the respective variables. The highest term retained in the 
expansions (3.8) and (3.9) is n = N,. Because of the expansion in trigonometric 
functions, fast Fourier transforms can be used in conjunction with the techniques 
described by Cooley et al. (1970) to  perform the spatial integrations using the 
trapezoidal rule. Thus, the total number of operations required for integration 
and summing the modes (see below) is O(N,log, N,) for a given (L, m) mode. An 
implicit finite-difference scheme involving a tridiagonal matrix would require 
O( 4x9 operations (Westlake 1968), and, as mentioned before, probably still 
require At 5 A@. Clearly, the damping character of the diffusive terms is 
explicitly present in the Green’s functions, and it can be shown from simple 
linear examples that, when the time integration is done as described below, no 
time step restriction proportional to n2n2 exists. 

The spatial integrations in (3.8) and (3.9) are performed first, then the time 
integration, The function involved in the time integral besides the Green’s 
function was approximated by a first-order Taylor series, e.g. letting f represent 

(3.10) 

The quantity @’/at was approximated by a one-sided backward difference in time. 
The time integral involving the exponentials in the Green’s function can then be 
performed analytically, and, once this is done, the series is summed over n to 
obtain TE, SE, and @E a t  time t +At. The series is summed over n because it is 
much quicker numerically to finite-difference the sum than to work with the 
coefficients of the trigonometric functions when computing the (L, m )  components 
of the nonlinear terms. The calculation of the latter will now be considered. 

In  the appendix it is shown that the nonlinear terms involve three types of 
products of the spherical harmonics: 

YE: YE:, (3.1 1 a )  

(3.1 1 b)  

(3.11 c) 

Defining 

P+, m, L,, m,, L,, m,) = J:/: Y z  [terms (3.11 a-c)] sin OclOclq5, 
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and representing by d? any of the (L ,m)  coefficients of the nonlinear terms, 
(A 1)-(A 3) show that d? is given in terms of sums like 

C Ia,b,camiama L1 Lz' (3.12) 

where the aT's represent Sg, TF, @? or their radial derivatives. By a series of 
integrations by parts and cyclic permutations of indices, 

L,, ml 4, m, 

I c  = 4[L1(Ll + 1) +L2(L* + 1) - L(L+ l)] I". 
There are essentially two ways of computing the dE. The first may be termed 

direct evaluation, and involves computing the I's, storing them, and evaluating 
sums like (3.12) explicitly (see e.g. Silberman 1954; Ellsaesser 1966). The second 
approach is a transform method developed by Orszag (1970), and is, with a few 
modifications, the method used in this paper. The question of which method to 
use is determined by the number of harmonics kept in the expansions (2.6) and 
(2.7). The number of operations (an operation being defined as a multiplication 
followed by an addition) required for the direct evaluation of all the nonlinear 
terms scales as N 5  when N is large, where N is the maximum value of L retained 
in (2 .6 )  and (2.7) and - L < m 6 L. The transform method scales as N3.  The 
storage required for both methods scales similarly when N is large. It is clear, 
therefore, that the transform method offers a clear advantage over direct evalua- 
tion when N is large enough. Although it is difficult to make reliable estimates of 
numbers of operations without doing computer counts, i t  was estimated that the 
two methods broke even somewhere between N = 6 and N = 8 for the present 
problem. At lower values of N ,  the estimated penalty for using the transform 
method seemed acceptable in light of the potential savings at  large N .  In addition 
t o  computer savings, the transform method contains a few other advantages 
which will be mentioned later. 

Basically, the transform method of computing the nonlinear coefficients is the 
discrete analogue of the analytic integrations one would normally do to calculate 
the coefficients. A horizontal (9, q5) grid structure is set up, the nonlinear terms 
are evaluated at  each horizontal grid point, and the equivalent of a discrete 
integration over (B,q5) performed. The fact that each of (3.1 1 a-c) is expandable in 
a finite series of surface harmonics allows the discrete method to compute 
exactly the nonlinear (L, m) coefficients required for (2.8)-( 2.10), whereas for an 
arbitrary product of surface harmonics and their derivatives this would in general 
not be possible. 

Since the transform method is described thoroughly by Orszag (1970), only the 
modifications that were made here will be discussed in detail. The first modifica- 
tion was to use Gaussian quadrature for integration over the angle 8, instead of 
the inverse matrices defined by Orszag. This eliminates the need to compute and 
store these matrices, and the only additional storage required besides the asso- 
ciated Legendre functions are the well-tabulated Gaussian zeros and weights. 
The method of Gaussian quadrature computes the nonlinear coefficients exactly, 
since the intergral over 6' required is of the form 

(3.13) 
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where p = cos 6, Pp(6) is the normalized associated Legendre function, and gm(8) 
is of the form 2N 

(3.14) 

with the product P,” Pz being a polynomial in ,u of degree n + L. For reasons 
discussed below, the highest degree involved in the calculations is 4 N  + 1, and 
therefore the degree of the quadrature (i.e. the value of L of the Legendre 
polynomial used for the quadrature) had to be greater or equal to 2 N  + 1. Using 
the fact the model is hemispheric and the zeros and weights for an even Legendre 
polynomial are symmetric about p, = 0, only N + 1 8 points and weights had to be 
used. (The use of an even-degree quadrature required using a degree 2 N + 2  
Legendre polynomial.) 

The second significant modification to the transform method was the following. 
From the appendix it can be seen that the number of terms in the poloidal and 
toroidal equations that would have to be multiplied at each (8, q5) grid point is 
rather large. In  addition, the number of independent sums over (L, m)  required 
at each grid point, not counting temperature, is 11. It was therefore decided to 
compute the nonlinear coefficients involved in (2.8) and (2.9) in the following 
manner. First, compute the (L,  m) coefficients of 

[(V x U) x u]?, sin8[(V x U) x U]B, sinB[(V x U) XU],. (3.15) 

It is necessary to multiply by sin8 in the last two expressions, to make the 
expression expandable in a finite series. The advantage of this approach is that 
only simple expressions are multiplied at  each (8,Q,) grid point, and three fewer 
sums over (L ,m) are required. This is partially balanced by the fact that 
coefficients all the way up to the highest in L, 2 N  + 1, have to be computed for the 
last two expressions of (3.15) (see below). One other advantage of this approach is 
that u is explicitly calculated, and this is convenient for computing the time step 
restriction due to the nonlinear terms. 

Denoting the (L,m) components of (3.15) by drLm, doLm, d,,,, respectively, it  
can be shown, after some algebra and use of recursion relations for the Y y ,  that 

1 2N+2 L 
(v x [(V x u) x .I>, = - - 2 E b,YE sin28 L=l  m = - L  

(3.16) 

1 a 2N+2 L 1 

r sin2 8 ar L=l 112= -L  r L,m 
( V x V x [ ( V x u )  x u ] ) ,  = -- r 2 

where 

E cLmYT+- C L(L+1)dTLmYZ, 

(3.17) 

bLm = imdo,, + ( L  + 2) A(L + 1, m) d4L+l,m - (L  - 1) A (L, m) d,-,%, (3.18) 

A(L,m) = [ (L -m)  (L+m)/(2L- l)i(2L+ l)]k 
c h  = imdq,, - ( L  + 2) A(L + 1, m) deL+l,m + ( L  - 1) A(L, m) deA-l,,,, 

and 

Because it is known from the products (3.1 1) that the highest L value involved in 
the series expansion of the left-hand sides of (3.16) and (3.17) is 2N, we can write 

(3.19) 

(3.20) 

(3.21) 
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Using the recursion relations for the YE, we get 

- bL, = A ( L  + 2, m) A(L + 1, m) aL+2,m 

- [ 1 - A  ( L  + 1, m)2 - A(L, w ) ~ ]  + A(L-  1,  m) A (L,  m) aL-2, nz, (3.22) 

and a similar equation with ch, phrep1acing b,,, a,,. Since aLm = Ofor L > 2N, 
a simple recursion relation is obtained for the aLm, and similarly for the ph. Thus 
all the ah, pLm needed for (2.8) and (2.9) can be obtained. The nonlinear terms 
in the temperature equation as well as the d, are handled following the general 
procedure described by Orszag (with the exception of the Gaussian quadrature 
mentioned above). 

Rigorous criteria for numerical stability of the present scheme could not be 
derived. Nevertheless, under the restrictions on the time step given below not 
one instance of numerical instability was encountered, The time step At was 
restricted by the minimum of the quantities 

(3.23) 

2M is the maximum value ofm, usually N .  The fist three quantities are evaluated 
at  each (O,q5) grid point used for computation of the nonlinear terms and at  each 
radial grid point. If P < 1 a factor P-l appears in the last two quantities, which 
are derived from the remaining part of the diffusion operators after d2/dr2 has 
been subtracted out. 

An idea of the computer time involved in the calculations can be obtained from 
the following. All computations were done on a CDC 7600. For N 6 8, i i  < 8, 
8, = 16, the computational time was 2.8s per time step. When N 6 4, M < 4, 
N, = 8, 0.4s per time step was required, and for N 6 8, M = 0, N, = 16, 0.28s 
per time step. Most runs consisted of between 100 to 300 time steps. 

4. Numerical results 
All computations are done for a ratio of inner radius to outer radius, denoted 

by 7, of either 0.3 or 0.6. Values of the Prandtl number considered are 1 and 5.  
The value P = 1-0 is representative of most gases, while P = 5-0 is large enough 
to show the effects of increasing P, but not so large as to make the nonlinear terms 
in the momentum equation unimportant. The highest value of the Rayleigh 
number treated is about 5.5 times the corresponding critical value. 

The number of vertical levels used in all the computations was 16. Because the 
L value associated with the most unstable mode for the onset of convection 
depends on 7 (see figure l), modes up to L = 6 were retained when 7 = 0.3, and 
modes up to L = 8 were retained when 7 = 0.6. For the three-dimensional 
solutions, Iml < 6 when 7 = 0.3, and Iml < 8 when 7 = 0.6. These resolutions for 
the fields were sufficient €or accuracies of the order of 5 % for the range of R 
considered. The accuracy of the calculations was determined by making spot 
checks with different numbers of vertical levels and spherical modes. 
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0 
1 2 3 4 5 6 7 

L 
FIGURE 1. Dependence of the critical value of the Rayleigh number for the onset of 
convection on L. The values are determined from the formulae in Chandrasekhar (1961) 
using the second approximation. The ordinate should be multiplied by 10’ for 7 = 0-3 and 
by lo2 for ?I = 0.6. 

4.1, Axisymmetric solutions 

One result of this study is that axisymmetric solutions, the analogue of two- 
dimensional rolls in plane parallel convection, are not a preferred solution of the 
full three-dimensional equations of motion. When the initial conditions are non- 
axisymmetric, in general there is no tendency for the fluid motion to reduce to the 
axisymmetric solution, a t  least for values ofR significantly above Ro. As discussed 
in 0 4.2, both steady axisymmetric and non-axisymmetric solutions were obtained 
for the same fluid parameter values in a range of R where the axisymmetric 
solution appears to be stable. However, it is found that the axisymmetric 
solutions do become unstable above a certain value Rc = Rc(P). 

Stability of the axisymmetric solutions was investigated by allowing a small 
thermal perturbation to occur in the (L, m) modes most unstable to the onset of 
convection. Hence, the perturbation occurred in the L =  2, m = 2 mode for 
7 = 0.3, and in the L = 4, m = 2 and m = 4 modes when 7 = 0.6. This was done 
rather than allowing an arbitrary or random perturbation because retaining 
a large number of modes would have been quite time consuming. Rigorously, 

45 FLM 63 



706 R. E .  Young 

R =  
P =  

8 2  

4000 
1-0 

- 3.03 
- 3.85 
- 2.81 

0.387 
0.688 
0.521 

- 0.0841 
- 0.136 
- 0.0895 

- 0.742 
- 0.225 

0-106 

- 0.515 
- 0.412 
- 0.302 

0.246 
0.194 
0.121 

- 0.156 
- 0.0901 
- 0,0338 

4000 
5-0 

- 0.701 
- 0.928 
- 0.628 

0.0729 
0.115 
0.0858 

- 0.0112 
-0.0169 
- 0.0115 

- 0.153 
- 0.0408 

-0.110 
- 0.0855 
- 0.0620 

0.0261 

0.0516 
0,0384 
0-0226 

- 0.0313 
- 0'0171 
- 0'00569 

8000 
5.0 

- 1.21 
- 1.61 
- 1-11 

0.129 
0.207 
0.153 

- 0.0342 
- 0'0413 
- 0.0238 

- 0.208 
- 0.0606 

0.0338 

- 0.0917 
- 0.0677 
- 0.0631 

0.0522 
0.0316 
0-0187 

- 0'0564 
- 0.0194 
- 0.00353 

TABLE 1. Spectrum of axisymmetric solutions given at 
r--T1 = 0.25, 0.5, 0.75. 7 = 0.3. 

therefore, we have put only an upper bound on R,, but it seems reasonable to 
expect that  three-dimensional perturbations occurring in the (L,  m) modes most 
unstable to  convection will also be the perturbations determining the lowest 
value of R,. The time integration was carried out until it was clear the perturba- 
tions were either decaying or growing, which sometimes required a large amount 
of time because of oscillatory behaviour. For this reason, Re was determined only 
t o  t,he nearest 500. 

When 7 = 0.3 and P = 1.0, the Rayleigh number above which instability occurs 
is between 4000 and 4500. When 7 = 0.6, P = 1.0, R, lies between 1500 and 2000. 
However, when P = 5-0 the axisymmetric solutions are stable over the whole 
range of R considered, both when 7 = 0.3 and when 7 = 0-6. It appears that there 
is a tendency for R,,JRo to decrease as 7 increases a t  fixed P, since a t  P = 1.0 when 
q = 0-3, 2-6 2 RJR0 < 3, and when 7 = 0-6, 1-8 7 RJR, < 2-4. The possible 
dependence of R, on the amplitude of a perturbation was not investigated. 

Spectrum. Tables 1 and 2 illustrate the distribution of amplitude as a function 
of L for the velocity and temperature in various cases. It should be borne in mind 
when comparing amplitudes that, for example, the contribution of a mode to u, 
is proportional to L(L + 1) times the amplitude of the mode. As expected, the 
dominant L mode in the solutions for the velocity is usually the L mode most 
unstable to the onset of convection. However, this is not always the case, as can 
be seen from table 2, which is for the case P = 5 . 0 , ~  = 0-6. The spectrum shows 
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R =  2000 2500 

8 2  0.230 0.727 
0.334 1.02 
0.240 0-718 

8 4  - 0.416 - 0.313 
- 0.569 - 0.429 
- 0.395 - 0.302 

s* -0*0111 - 0.128 
- 0.00931 -0.167 
- 0.00232 -0.112 

8 8  0.0347 - 0.0137 
0.0446 - 0.0129 
0.0294 - 0.00553 

0 0  -0.151 - 0.155 
- 0.0352 - 0.0452 

0.0639 0.0616 

0 2  0.0309 0-0929 
0-0561 0.129 
0.0445 0-105 

0 4  -0.133 - 0.0760 
- 0.142 - 0.0780 
-0.117 -0'0817 

0 6  -0.0128 - 0.0810 
- 0.00640 - 0.0592 

0.00327 - 0.0403 

0 8  0.0573 - 0.0139 
0.0349 - 0.0105 
0-0175 - 0.00294 

TABLE 2. Spectrum of axisymmetric solution for 7 
given a t  r-rl = 0.25, 0.5, 0.75. 

4000 

1.32 
1.85 
1.31 

- 0.366 
- 0.485 
- 0.341 

- 0.150 
-0.211 
-0.153 

- 0.0702 
- 0.0859 
- 0.0542 

- 0.203 
- 0,0635 

0-0759 

0,127 
0.133 
0.123 

- 0.0620 
- 0.0416 
- 0.0639 

- 0.0521 
- 0.0428 
- 0.0442 

- 0.0498 
- 0.0383 
- 0.0214 

= 0.6, P = 5.0 

a distinct change of character between R = 2000 and R = 2500, with the L = 2 
mode becoming considerably larger than the mode most unstable to the onset of 
convection, L = 4. Such behaviour persisted whether the region between 
R = 2000 and R = 2500 was approached from above or below. This phenomenon 
does not occur in the steady three-dimensional solutions corresponding to the 
same fluid parameters, nor does it occur for axisymmetric solutions when r ]  = 0.3 
within a similar range of RIR,. The above comments apply also to the tempera- 
ture, with the addition that at the higher values of R the L = 0 mode can be the 
largest in regions next to the boundaries where the basic temperature gradient 
has been modified the most by convection. Qualitatively similar effects have 
been observed both experimentally and theoretically in planar convection in 
enclosed volumes, where it is observed that the number of convection cells 
decreases as the Rayleigh number increases (Krishnamurti 1970; Koschmieder 
1969; Davis 1968; Deardorff & Willis 1965). Whether or not the above behaviour 
occurs in the other solutions at  higher values of R remains to be investigated. 

Heat transport. Since when P = 1.0 the axisymmetric solutions become 
45-2 
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FIGURE 2 .  Nusselt number as a function of R/R, for the axisymmetric solutions at P = 5.0. 
The last points indicated on the curve for 7 = 0.6 were not checked for stability. 

unstable at relatively low values of R/Ro, we shall concentrate the discussion of 
heat transport on the cases for which P = 5-0. Figure 2 gives plots of the Nusselt 
number N u  against RIR,. When 7 = 0.3, the curve qualitatively resembles linear 
plots of N u  against R/Ro given in Veronis ( I  966). Substituting in the appropriate 
numbers, it appears to be approaching a power law in R/R, with an exponent 
close to 9, however, more computations would be required to establish firmly 
the functional dependence. When 7 = 0.6, there is an inflexion region occurring 
between 2.2 2 R/Ro 2 2-9. This is in the same region of RIR, where the modal 
character of the solution is changing, as discussed previously. Transitions in N u  
as a function of RIR,, for planar convection have been observed experimentally by 
Malkus (1954), Willis & Deardorff (1967) and Krishnamurti (1970). Whereas they 
observed an increase in heat flux, in figure 2 the heat flux after the transition 
is less than it would have been had the transition not occurred. This is con- 
sistent with the expectation that larger cells are less efficient in transporting 
heat (but see Davis 1968). Krishnamurti was able to associate one transition with 
a change from two-dimensional rolls to three-dimensional cellular flow. From the 
above example, it  is clear changes in the horizontal structure of two-dimensional 
flows can also generate transitions in heat flux. However, the transition need 
not be associated with the Rayleigh number at  which additional horizontal modes 
become unstable to convection (compare the transition region of figure 2 with 
figure 1 at L = 2). Beyond the inflexion region, the curve again appears to be 
approaching an (R/R,)n power law with n z &, although with a significantly 
different slope from when 7 = 0.3. Within the range of R for which the axisym- 
metric solutions are stable a t  P = 1-0, N u  is independent of P to within the 
accuracy of the calculations. It can be seen from figure 2 that N u  is an increasing 
function of 7 for fixed RIR, and P. 
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FIGURE 3. Steady-state convection cells for axisymmetnc solutions. 
(a) R = 8000, P = 5.0, 7 = 0.3. (b)  R = 4000, P = 5.0, 7 = 0.6. 

Pole (6) Equator 

FIGURE 4. Steady-state isotherms for axisymmetric solutions. The pure conduction solution 
is subtracted out. The numbers in the figure represent only the relative magnitudes of the 
isotherms. (a)  R = 8000, P = 5.0, 7 = 0.3. (b) R = 4000, P = 5.0, 7 = 0.6. 
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43: 
FIGURE 5. Vertical profiles of a!. Both profiles are for P = 5.0. 

Velocity and temperature3elds. I n  figures 3 and 4 are shown the steady velocity 
and temperature fields of two stable axisymmetric solutions. It was found that 
the axisymmetric solutions always reached steady state, irrespective of R or P. 
This is not always the case with non-axisymmetric solutions discussed in 8 4.3. 
When 7 = 0.3, figure 3(a), there is only one cell between equator and pole, and 
the upwelling region is much narrower than the downwelling region. When 
7 = 0-6, figure 3 ( b ) ,  two cells are apparent, with the cells being highly asymmetric. 
I n  both figures the asymmetric structure of the cells is partly nonlinear in origin, 
and partly due to the fact that the Legendre functions are only symmetric about 
8 = in-. From figure 4 it can be seen that the maximum vertical thermal gradients 
occur near the boundaries, as expected, and are correlated with the sense of the 
vertical velocity. Figure 5 gives the vertical profile of the coefficient 0: for the 
same cases as above. 

4.2. Non-axisymmetric solutions 

For obvious reasons non-axisymmetric solutions take much more time to obtain 
than do axisymmetric solutions. I n  addition, the approach to steady state was 
usually characterized by oscillatory behaviour, generally of relatively small 
amplitude. However, in some cases discussed later in 3 4.2, the oscillations are not 
small and may persist indefinitely, which behaviour was never observed in the 
axisymmetric solutions. Toroidal modes, which are driven by nonlinear inter- 
actions involving non-axisymmetric poloidal modes, can contribute to the 
velocity, and must be considered. It was found, however, that toroidal modes were 
negligible in all but the instances of seeming permanent oscillatory behaviour 
mentioned above. 

When 7 = 0.3, the first non-axisymmetric solution was obtained by perturbing 
the axisymmetric solution for R = 6000, P = 1.0 in the manner described before, 
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then following the time development to steady state. For reasons discussed below, 
when 7 = 0.6 the procedure of perturbing the axisymmetric solution could not 
be used to obtain steady solutions a t  either P = 1-0 or P = 5.0, since the axisym- 
metric solutions are stable. Hence, the first non-axisymmetric solution when 
7 = 0.6 was obtained by subjecting the pure conduction solution to three- 
dimensional thermal perturbations. Once the first steady non-axisymmetric 
solution was obtained for either value of 7, it was used as the initial conditions for 
solutions with different parameter values, and so on. 

Duality of solutions. When P = 5.0, steady non-axisymmetric as well as 
axisymmetric solutions were obtained up to the largest value of R considered at 
either value of 7. Values of R as low as 1200 (R/Ro z 1.4) at 7 = 0-6 were treated. 
As discussed previously, the axisymmetric solutions are stable in this range of R. 
The stability of the non-axisymmetric solutions is inferred from the fact that 
they were obtained from initial conditions differing by a finite amount from the 
final steady state (see also the discussion of the spectrum given below). At P = 1.0, 
the same comments apply, except that the maximum value of R must be less than 
R, to have stable axisymmetric solutions, and R must be less than - 2R0 when 
7 = 0.6 to get steady non-axisymmetric solutions (see the discussion of oscillatory 
behaviour given later). 

The fact that steady non-axisymmetric solutions exist at  the same parameter 
values for which axisymmetric solutions were obtained indicates that axisym- 
metric solutions are not a preferred state of the full three-dimensional equations. 
Even if the steady non-axisymmetric solutions were found to be unstable to some 
sort of perturbation this would not alter the conclusion, since the axisymmetric 
modes are explicitly accounted for in the non-axisymmetric solutions, and if the 
solution wanted to relax to the axisymmetric case it was free to do so. In  addition, 
none of the oscillatory solutions discussed later reduced to axisymmetry. Steady 
three-dimensional motions existing in regions where two-dimensional solutions 
are stable have been observed experimentally for planar convection by Krishna- 
murti (1970), who observed hysteresis effects depending on whether R, was 
approached from above or below. 

A comparison of the stable axisymmetric and non-axisymmetric solutions for 
the same fluid parameter values yields the interesting result that the Nusselt 
numbers differ by only N 5 yo. This may imply that integral properties of the 
flow are adequately represented by the axisymmetric solutions when they are 
stable, even though the fields themselves are not. 

In  the non-axisymmetric caSes there were instances where steady as well as 
oscillatory solutions were obtained at the same parameter values. These will be 
discussed later, but it is clear that initial conditions can play an important role in 
determining the character of the finite-amplitude solution. Of course it would be 
desirable to be able somehow to classify what sort of initial conditions lead to a 
certain kind of solution, but this just is not feasible at present because of the 
amount of computer time that would be required. 

Spectrum. The dominant modes in the steady three-dimensional cases are the 
modes associated with the L value most unstable to the onset of convection. NO 
transition regions of modal behaviour or heat flux, such as occurred in the one 
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FIGURE 6. Nusselt number as a, function of RIR,. 7 = 0.3, P = 1.0. 

axisymmetric example, were observed in any of the steady non-axisymmetric 
solutions for the range of R treated. Tables 3-5 present the modal distributions 
for three steady non-axisymmetric solutions. In  each instance the value of R is 
the highest that was considered at  the particular value of 7. Note that modes with 
odd m values are not included. When 7 = 0.6, modes with odd m values were 
explicitly included in the calculations, but were found to be negligible in the 
steady state. When q = 0.3, as discussed above, the odd-m modes were not 
explicitly in the computations, since the initial conditions contained only even- 
m modes. Checks of stability to perturbations of odd-m modes were made in some 
of these cases, however, and the solutions were found to be stable. Only the 
oscillatory solutions discussed below had significant energy in the modes with odd 
values of m. 

Heat transport. The dependence of heat flux on Rayleigh number for the steady 
non-axisymmetric solutions is similar to that of the stable axisymmetric solutions 
in the range of R considered, with the exception that no transition regions were 
observed. In  other words, Nu is within about 5 %  of the Nu for the stable 
axisymmetric cases, and is always a smoothly varying function of RIR,. However, 
when the axisymmetric solution does become unstable a transition in heat flux is 
indicated. Figure 6 illustrates this when 7 = 0.3, P = 1.0. As discussed in $ 4.1, 
the axisymmetric solution becomes unstable to non-axisymmetric perturbations 
when 2.2 < R/R, < 2.9. From the figure it appears that when this happens 
a change of heat flux will occur if the fluid is initially in the axisymmetric state. 
Presumably a similar phenomenon takes place when P = 5.0 when R/R, is large 
enough (i.e. at values of B/Ro larger than those considered here, the difference in 
Nu between the axisymmetric and non-axisymmetric solutions is significant, and 
somewhere in this region the axisymmetric solution becomes unstable). Krishna- 
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s;, s: - 2.09 
- 3-30 
- 2.94 

s",, s:, s: 0.0463 
0.148 
0.219 

- 0.00976 
- 0.0235 
-0.0178 

e, @, &, 8: 

o: - 1.01 
- 0.530 
- 0.0497 

o;, 0: - 0.267 
-0.168 
-0.163 

o:, o:, 0: 0.0578 
0.0641 
0.0513 

- 0.0224 
- 0.0356 
- 0.0169 

@& @:, a:, 0: 

2.56 
4.04 
3.60 

- 0.0488 
-0.157 
- 0.231 

0.0100 
0.0241 
0.0182 

0.327 
0.206 
0.200 

- 0.0610 
- 0.0676 
- 0.0541 

0.0230 
0,0365 
0.0173 

0.0647 
0.207 
0.306 

- 0.0110 0.0150 
- 0.0265 0.0360 
- 0.0200 0.0273 

0.0808 
0-0895 
0.0716 

- 0.0253 0.0343 
- 0.0400 0.0542 
- 0.0189 0.0257 

TABLE 3. Spectrum of non-axisymmetric.solution for R = 8000, P = 1.0, 7 = 0.3 a t  
r - r1  = 0.25, 0.5, 0.75. All toroidal modes have magnitudes less than 5 x Modes 
with rn odd are zero (see text). 

0.598 -0.733 
0.798 -0.978 
0.549 -0.673 

0.0489 - 0.0515 
0.0781 - 0.0824 
0.0579 - 0.0610 

0.0107 - 0.0110 
0.0130 -0,0134 
0.00753 - 0,00772 

- 0.210 
- 0.0630 

0.0314 

0.0457 - 0.0560 
0.0336 - 0.0412 
0.0311 -0.0381 

0,0197 - 0.0267 
0.0120 -0.0127 
0.00718 -0.00750 

0.0177 -0.0181 
0.00614 - 0.00629 
0.001 15 - 0.001 18 

0.0682 
0.109 
0.0808 

0.0120 -0.0163 
0.0146 - 0.0198 
0'00846 - 0.01 15 

0,0274 
0.0168 
0.00993 

0.0198 - 0'0268 
0.00689 - 0.00933 
0'00129 - 0.00174 

TABLE 4. Spectrum of non-axiaymmetric solution for R = 8000, P = 5.0, 7 = 0.3 at 
r - r l  = 0.25, 0-5, 0.75. All toroidal modes have magnitudes leas than lo-*. Modes with 
rn odd are zero. 
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e? i% - 0-00294 0~00111 
- 0.00452 0*00176 
- 0'00363 0.00141 

s;, s;, 8;: - 0.130 0.41 1 0.234 
- 0.192 0.606 0.344 
-0'146 0.460 0.262 

0.0172 -0.0137 - 0.019'7 - 0.0101 
- 0.0307 -0.0139 0.0241 - 0.0192 

s:, s:, 8& s: 0.00648 0.00103 -0.00225 0.00182 

s;, ss", s;, xi, s; 0.0201 - 0.00857 0.0205 0.0197 0.0113 
0.0250 - 0.0106 0.0254 0.0244 0.0140 
0.0155 - 0.00659 0.0157 0.0151 0.00867 

@: 0.221 
-0*110 

@, @; 6.80 x - 8.4 x lo4 
0-0471 

- 2-12 x 1 0 4  
- 6.24 x 10-4 

7.4 x 10-5 
2.37 x 10-4 

0;, a;, 0: - 0'0213 0.0682 0.0385 
-0.0213 0.0674 0.0383 
- 0.0252 0.0793 0.0452 

o:, o:, o:, 0: 0.0127 0.00432 - 0.00777 0.00618 
- 0'00775 - 0.00351 0.00613 -0.00490 
- 0.0109 - 0.00466 0.0081 1 - 0.00646 

0:, @:, 084, a:, 0: 0.0237 - 0.0102 0.0243 0.0232 0.0134 

- 0.00142 6.87 x lop4 - 0.00158 - 0*00141 - 8.91 x 
0.00823 0.0146 - 0.00626 0.0149 0,0143 

TABLE 5. Spectrum of non-axisymmetric solution for R = 4000, P = 5.0, 7 = 0.6 at 
T -TI = 0-25, 0-5, 0-75. All toroidal modes and modes with m, odd have magnitudes less 
than 5 x lo3. 
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FIGURE 7. Temporal behaviour of the net conductive heat flux H at the inner 
boundary for the oscillatory case R = 2500, P = 5.0, 7 = 0.6. 

murti (1970) has observed experimentally a transition in dependence of heat flux 
on Rayleigh number for planar convection associated with the instability of two- 
dimensional rolls to three-dimensional disturbances. 

Oscillatory behaviour. As discussed already, once a steady non-axisymmetric 
solution was obtained, it could be used as the initial conditions for subsequent 
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calculations at  neighbouring parameter values. In  this manner were most of the 
steady solutions computed. However, starting from different initial conditions, 
a steady state was not always achieved at  the same parameter values for which a 
steady solution was obtained by the method described above. Such a case is 
R = 2500, P = 5-0, 1;1 = 0.6, for which computations were also made using as 
initial conditions non-axisymmetric thermal perturbations to the pure conduc- 
tion solution. For the most part, these computations were done using the repre- 
sentation N 6 4, m < 4, N,. = 8, because the highly oscillatory nature of the flow 
precluded making lengthy runs with more accurate representations owing to the 
very large amount of computer time that would have been required. Figure 7 
illustrates the variation of the total heat flux a t  the lower boundary as a 
function of time. Once the initial transient period is over, the dependence settles 
down to an essentially sinusoidal oscillation. The oscillation periods for the 
poloidal and thermal modes were generally about 1-5 times the oscillation period 
of figure 7, while the toroidal modes had oscillations having approximately twice 
this period. This behaviour was verified by integrating over one oscillation period 
of figure 7 with the representation N < 8, m d 8, N,. = 16. The period of oscilla- 
tion was virtually unchanged, and the amplitude of the oscillation increased by 
approximately 15 %. Therefore, whether or not a solution reaches steady state 
appears to depend on the initial conditions from which it is started. 

In  addition, when P = 1.0,r = 0.6, no steady solutions at  all could be found 
when RIR, 7 2. At R/R, = 1-37 (R = 1200) a steady solution exists, and when 
P = 5.0 steady solutions were obtained up to the maximum value of R treated, 
RIR, N 4. When 7 = 0.3 steady solutions could be obtained when P = 1.0 over 
the entire range of R considered (i.e. up to RIR, N 5). Therefore, it can be 
speculated that as 7 increases one must go to larger values of P and/or smaller 
values of R/Ro for steady non-axisymmetric solutions to exist. 

The fact that toroidal modes are significant in the oscillatory solutions but quite 
small in the steady cases suggests that the origin of the oscillatory behaviour lies 
in the nonlinear terms of the momentum equation. This conclusion is supported 
by the fact that steady non-axisymmetric solutions could not be found at  all when 
q = 0-6, P = 1-0, RIR, 2, but were obtained at P = 5.0 for R/Ro > 2. If P is 
taken as very large so that the nonlinear terms in the momentum equation 
become much less important, it  is possible that oscillatory behaviour would not 
occur for any set of initial conditions. As mentioned previously, the axisymmetric 
solutions always reached steady state, irrespective of the values of R or P, with 
toroidal modes not occurring in these solutions because there is nothing to drive 
them. 

Velocity und temperature $el&. Of particular interest concerning the steady 
non-axisymmetric solutions is the horizontal planform of the convection cells. 
Pigure 8 illustrates the horizontal velocity field at  the outer boundary using a 
polar stereographic projection. When 7 = 0-3, P = 1.0, R = 8000, figure S(u) 
shows two cells, with the centre of each cell located on the equator; fluid rises a t  
the centre and descends over a rather broad region which more or less defines the 
cell boundaries. Located 90" in longitude away from the centres of rising fluid are 
null points where the total fluid velocity is very small. Surprisingly, when 
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FIGURE 8. Steady horizontal velocity field at the upper boundary using a polar stereo- 
graphic projection. The bottom point of the figure corresponds to $ = 0. (a)  R = 8000, 
P = 1.0, 7 = 0.3. ( b )  R = 8000, P = 5.0, 7 = 0.3. (c) R = 4000, P = 5.0, = 0.6. 

P = 5-0 for the  same values of 7 and R, figure S(b) ,  the descending and rising 
regions have switched positions, so that the centre of the cell is now associated 
with downwelling fluid. 

Figure 8(c)  illustrates the case 7 = 0.6, P = 5.0, R = 4000. Pour cells can be 
seen, which means that a total of six cells occur over the whole sphere (remember 
that the flow is symmetric about the equator). The cells are somewhat distorted 
towards the equator by the projection, but by carefully comparing latitudes, or 
by looking at figure 9 (e) ,  it can be seen that the cells not located on the equator 
extend almost equally in latitude on either side of the cell centre, which is 
located a t  8 = 45". Again there are null points located 90" in longitude away from 
the centres of the equatorial cells. 

Figures 9 and 10 present meridional cross-sections of u and 0 for the same 
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FIGURE 9. Meridional cross-section of the steady convection cells. (a) R = 8000, P = 1.0, 
q = 0.3, $ = 0. ( b )  Same as (a) ,  except P = 5.0. (c) R = 4000, P = 5.0, q = 0.6, r$ = 0. 
(d )  Same as (c), except $ = +r. 

cases as in figure 8. In  most of the figures the magnitude of the vertical velocity is 
considerably greater in the upwelling regions than in the descending regions, the 
descending regions being spread over a relatively broad area. The exception is the 
case P = 5.0, R = 8000, 7 = 0.3, figure 9 ( b ) ,  where the up and downwelling 
velocities are comparable. As in the axisymmetric cases, the largest values of 
vertical thermal gradient occur near the boundaries, and are clearly correlated 
with the sign of the vertical velocity. Figure 11 presents the vertical profiles of the 
coefficient 0;. 
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FIGURE 10. Moridional cross-section of the steady temperature fields. The pure conduction 
solution is subtracted out. The numbers iii the figurc represent only the relative magnitudes 
of the isotherms. (a) R = 8000, P = 1.0, 9 = 0.3, 4 = 0. ( 6 )  Same as (a), except P = 5.0. 
( c )  R = 4000, P = 5.0, 9 = 0.G, $ = 0. ( d )  Same as (c )  except 4 = &r. 

5. Discussion and conclusions 
Two major results emerging from the computations are that initial conditions 

are important in determining the finite-amplitude behaviour of the fluid, and 
second, that a range of R exists where axisymmetric solutions are stable but 
are not preferred; in other words, if for this range of R the initial conditions are 
non-axisymmetric, there is no tendency for the fluid to reduce to an axisymmetric 
state. Some of the experimental observations of Krishnamurti (19iO) indicate 
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FIGURE 11. Vertical profiles of 0:. -, P = 5.0, - - -, P = 1.0. 

The bottom scale is for P = 1.0. 

there may be similar behaviour in planar convection, with three-dimensional 
cellular convection occurring in the region of R where two-dimensional rolls are 
stable. 

The fact that initial conditions are important in planar convection is indicated 
by the work of Schliiter, Lortz & Busse (1965) and Busse (1967), and has been 
explicitly demonstrated by Foster (1969) and Ogura (1971). In  this work the 
dependence on initial conditions has been demonstrated for the non-axisymmetric 
solutions. In  particular, it was found that depending on initial conditions it is 
possible for both steady and oscillatory golutions to exist at  the same parameter 
values. In  addition, as described above, both stable non-axisymmetric and 
axisymmetric solutions can exist a t  the same parameter values. 

Computations regarding stability show that steady axisymmetric solutions 
become unstable to small non-axisymmetric disturbances above a certain value 
of the Rayleigh number, and this value is an increasing function of Prandtl 
number. Such behaviour is in qualitative agreement with the results of Busse 
(1972) concerning the instability of two-dimensional rolls to three-dimensional 
perturbations at small values of the Prandtl number. 

The dominant modes in the solutions are usually the modes most unstable to 
the onset of convection. However, as the Rayleigh number is increased, a sudden 
transition in horizontal flow structure occurs in the stable axisymmetric case for 
which 7 = 06, P = 5.0 (i.e. the dominant mode changes from one corresponding 
to a value L = 4 to one corresponding to a value L = 2). Associated with this 
change in modal behaviour is a transition in the dependence of heat flux on R 
which occurs within a range of R that is significantly above the value at which 
the L = 2 mode becomes unstable to the onset of convection, indicating that the 
transition is not associated with new modes becoming unstable. Such behaviour 
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was not observed in any of the non-axisymmetric solutions, but presumably a t  
high enough values of R similar transitions would occur. However, there does 
apparently exist a transition in heat flux when the axisymmetric solutions 
become unstable and the fluid is initially in the axisymmetric state. 

Finally, when 7 = 0.6, P = 1.0, steady non-axisymmetric solutions could not 
be found for R/Ro 2 2, whereas when 7 = 0.6, P = 5.0, or 7 = 0.3, P = 1.0 steady 
solutions could be obtained for RIR, > 2. This does not prove steady solutions 
do not exist when 7 = 0.6, P = 1.0, R/Ro 2 2, since computations were not made 
starting from all possible initial conditions. Nevertheless, the implication is that, 
as 7 increases, stable steady solutions become possible only as the Prandtl number 
increases and/or the Rayleigh number decreases. 

Unfortunately, a number of interesting questions have been left unanswered 
by the present study, because of the practical consideration of computer time. 
For example, in the case of the axisymmetric solutions it would be desirable to  
generate the actual curve R, = R,(P) and to investigate further possible transi- 
tions in horizontal flow structure and heat flux. Also, the effects of initial con- 
ditions on axisymmetric solutions need to be considered. Concerning the non- 
axisymmetric solutions, one would like to determine the relationship between 
R and P that defines the region where steady solutions exist, and in addition to 
determine a similar curve where steady solutions are the only ones that exist, 
assuming there is such a curve. Where do transitions in flow structure and heat 
flux occur in three dimensions? And finally, as 7 -+ I, do axisymmetric solutions 
become preferred solutions '1 

The author benefited from numerous discussions with Bernard Durney, Peter 
Gilman and Jack Herring. Many thanks are also due David Gubbins for his 
detailed and constructive comments on the preliminary draft of the paper. The 
work was carried out at  the National Center for Atmospheric Research, which is 
sponsored by the National Science Fouodation. 

Appendix 
The nonlinear terms involved in the toroidal, poloidal and temperature 

equations are given below in terms of products of spherical surface harmonics, 
We shall denote the products (3.11.a-c) by P,, P2, P3, respectively. In  addition, 
a summation over L,, m,, L,, m2 is always implied, so the summation signs will be 
omitted. 

1 a e .  v x [(V x u) x u] = - L,(L, + 1) - (r"2) @L2(L2 + I) Pl 
r3 ar 
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where 
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